
NASA/CR-1998-207657

Aircraft/Air Traffic Management
Functional Analysis Model, Version 2.0,
Technical Description
Melvin Etheridge, Joana Plugge, and Nusrat Retina
Logistics Management Institute, McLean, Virginia

April 1998

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counter-part or peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that help round out the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301) 621-0390

• Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1998-207657

Aircraft/Air Traffic Management
Functional Analysis Model, Version 2.0,
Technical Description
Melvin Etheridge, Joana Plugge, and Nusrat Retina
Logistics Management Institute, McLean, Virginia

April 1998

Prepared for Langley Research Center
under Contract NAS2-14361

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

iii

Contents

Chapter 1 Introduction ..1-1

PURPOSE OF THE MODEL...1-1

Chapter 2 Description of Simulation Events ..2-1

Chapter 3 Technical Design ..3-1

PROGRAM DESCRIPTION..3-2

PROGRAM MODULES...3-2

GLOBAL LIST AND OVERALL MODEL DIAGRAM ..3-4

MODEL PROCEDURES..3-5

SIMULATION OBJECTS...3-11

Controller Object (controllerObj) ..3-12

System Object (sysObj) ..3-12

Aircraft Object (aircraftObj)..3-13

Load Object (loadObj) ...3-14

CHANNEL OBJECTS..3-17

ChannelList ..3-17

Lock Channel ...3-18

Unlock Channel..3-19

EVENT PROCESSING..3-19

TELL Method Process Trigger...3-22

Random Event Processing..3-31

OUTPUT...3-33

Resetting Output Parameters..3-34

Gathering Output Statistics ..3-34

Final Report..3-35

ERROR PROCESSING..3-37

Appendix A FAM 2.0 Error & Warning Messages

Appendix B FAM 2.0 Test Plan

iv

Appendix C FAM 2.0 ModSim III Code Listings

FIGURES

Figure 3-1. FAM 2.0 Main Module Code Listing..3-2

Figure 3-2. Program Global List Hierarchy..3-4

Figure 3-3. Simulation Object Class ..3-11

Figure 3-4. Simulation Object Contents...3-12

Figure 3-5. Types of Controller Objects...3-12

Figure 3-6. Types of System Objects ...3-12

Figure 3-7. Aircraft Object Diagram..3-13

Figure 3-8. Relationship of Aircraft Files ..3-14

Figure 3-9. Load Object Data Structure ...3-15

Figure 3-10. LookupLoad Pseudocode...3-16

Figure 3-11. Pseudocode for buildLoad Procedure..3-17

Figure 3-12. Communications Example...3-18

Figure 3-13. Method lockChannel Pseudocode ...3-18

Figure 3-14. Relationship Between simObj and channelObj ...3-19

Figure 3-15. Method unlockChannel Pseudocode ...3-19

Figure 3-16. Method lookupAssociatedEvtList Pseudocode ...3-22

Figure 3-17. ProcessTrigger Method Pseudocode..3-25

Figure 3-18. Associated Event Block Before Setting ORG and DST3-26

Figure 3-19. Associated Event Block After Setting ORG and DST....................................3-26

Figure 3-20. Event Pending Lists for Sector Change Event...3-27

Figure 3-21. Method commenceEvt Pseudocode...3-28

Figure 3-22. Logic Flow of Random Event TELL Methods..3-31

Figure 3-23. TELL method processTrigger..3-31

Figure 3-24. TELL method generateRandomEvent ...3-32

Figure 3-25. TELL Method setupRandomEvent Pseudocode..3-33

Figure 3-26. Final Report Production Pseudocode ..3-36

Contents

v

TABLES

Table 3-1. Program Module Descriptions ..3-3

Table 3-2. Global List Descriptions ...3-4

Table 3-3. Sample trig.evt File...3-20

Table 3-4. Sample Event Dictionary File ...3-21

Table 3-5. Sample trig.evt File...3-23

Table 3-6. Trigger Event Object Block Contents...3-23

Table 3-7. Pointer Location in trigevtObj ..3-24

Table 3-8. Sample Sector Change Associated Events..3-26

Table 3-9. Wait Statistics Fields in simObj ...3-34

Table 3-10. Controller and Systems Objects Statistics Counters...3-35

Table B-1. Random Event Processing Tests ... B-1

Table B-2. Event Dictionary Error Detection Test.. B-2

Table B-3. Aircraft Event Sequencing Tests... B-3

Table B-4. ARTCC Tests .. B-3

Table B-5. AOC Event Test Plan .. B-4

Table B-6. Airport Controller Tests .. B-6

Table B-7. TRACON Controller Tests, First Phase.. B-7

Table B-8. TRACON Controller Tests, Second Phase ... B-7

Table B-9. Communications Channels Tests .. B-8

Table B-10. Type File Tests .. B-8

Table B-11. Sector Dictionary File Tests .. B-9

Table B-12. AOC Dictionary File Tests.. B-9

Table B-13. Airport Dictionary File Tests .. B-9

Table B-14. TRACON Dictionary File Tests.. B-10

Table B-15. Load File Tests .. B-10

Table B-16. Scenario File Tests .. B-11

Table B-17. Other Runtime Error Tests .. B-12

1-1

Chapter 1

Introduction

The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0
(FAM 2.0), is a discrete event simulation model designed to support analysis of
alternative concepts in air traffic management and control. FAM 2.0 was devel-
oped by the Logistics Management Institute (LMI) under task order NS703 of the
National Aeronautics and Space Administration (NASA) contract number NAS2-
14361. This document provides a technical description of FAM 2.0 and its com-
puter files to enable the modeler and programmer to make enhancements or modi-
fications to the model. Those interested in a guide for using the model in analysis
should consult the companion document, Aircraft/Air Traffic Management Func-
tional Analysis Model, Version 2.0 Users Manual.

PURPOSE OF THE MODEL

FAM 2.0 is designed to be used by personnel at NASA, the Federal Aviation Ad-
ministration (FAA), and other organizations and institutions. Those who analyze
and decide among competing programs for modernizing air traffic management
may find that FAM 2.0 is a useful tool. We intend the model to be usable with lit-
tle or no instruction by individuals who are unfamiliar with either the model or the
host simulation environment. The intended user is the analyst, not the modeler.

FAM 2.0 is designed to provide quantitative time and queuing information about

◆ personnel work/task loads,

◆ equipment demand/utilization, and

◆ communications channel saturation.

This information is for

◆ aircraft,

◆ air traffic management and control, and

◆ airline operations centers.

FAM 2.0 provides users the flexibility to define the simulation scenario to address
the particular issue or question under analysis. Baseline simulation scenarios come
with the model, representing several different 3-hour periods of all flight opera-
tions by the Denver Air Route Traffic Control Center (ARTCC), Denver Terminal

1-2

Radar Approach Control (TRACON), and the Denver International and Colorado
Springs Municipal Airports. Users can modify the baseline scenario or load an
entirely new scenario if desired. Permissible user modifications include

◆ adding or deleting scenario events,

◆ changing the model’s behavior when an event occurs,

◆ changing the characteristics of simulation objects (i.e., aircraft and
ARTCC sectors), and

◆ Defining new simulation objects (i.e., aircraft and ARTCC sectors).

These modifications are made to simple text files. Generally, users makes change
once to the appropriate file in the baseline scenario and the model applies that
change wherever appropriate in the simulation. Similarly, entirely new files in the
appropriate format can be loaded at simulation initialization to replace corre-
sponding parts of the baseline.

FAM 2.0 was developed in the MODSIM III simulation environment hosted on an
HP-UNIX platform. Since MODSIM III generates an executable (.exe) file, FAM
2.0 can run on any HP-UNIX platform. It is available from LMI, McLean, Vir-
ginia.

2-1

Chapter 2

Description of Simulation Events

FAM 2.0 is a discrete event simulation model centered around the events associ-
ated with a given simulation scenario. Currently, the model replicates the opera-
tions of Denver ARTCC, Denver TRACON, and the Denver and Colorado
Springs Airports. Users have the option of modifying some part(s) of the baseline
simulation and/or entering an entirely new scenario.

The simulation has two types of events:

◆ A priori events, events that are known in advance for each flight, and

◆ random events, events that occur randomly during a flight.

An example of an a priori event would be a handoff of an aircraft from one con-
troller to another. Random events include both routine and unusual or emergency
events that occur randomly, such as a request for a change of flight level.

Each of these primary events, both a priori and random, has a fixed set of associ-
ated sub-events. Continuing the previous example, a handoff from one controller
to another might be broken down into the following associated sub-events:

◆ Request from losing to gaining controller to take control

◆ Acceptance of control from gaining controller to losing controller

◆ Instructions from losing controller to aircraft to contact gaining controller

◆ Aircraft “rogers” acknowledgment.

A request for change of flight level might have these associated sub-events:

◆ Aircraft contacts controller

◆ Controller “rogers”

◆ Aircraft requests new flight level

◆ Controller clears aircraft to climb/descend to new flight level or denies re-
quest

◆ Aircraft acknowledges.

2-2

There are, then, two levels of events: (1) the primary events and (2) for each pri-
mary event, a set of associated sub-events. To differentiate between the two,
hereinafter we note a primary event with an upper case ‘e’ (“Event”) and an
associated sub-event with a lower case ‘e’ (“event”).

During the simulation run, whenever a FAM 2.0 primary Event occurs, the model
executes the set of associated events. Each of the associated events carries with it
personnel task loadings, equipment requirements, and communications channel
demands all in units of time.

There can be more than one set of associated events for each a priori Event type.
The associated event sets could vary according to the equipment installed on the
aircraft or available to the controller. An example could be the use of data link to
provide certain communications. The situation could exist where some aircraft
had a data link and others did not. Communications with controllers would pri-
marily use the data link, if installed. The model would use different sets of associ-
ated events in the simulation for aircraft with and without data link.

There are two sources of primary Events. The a priori Events are contained in a
text file, which is read by the model at the start of the simulation. Random events
are generated by a random event generator inside the model. During the simula-
tion, when an Event occurs, whether from the a priori Event file or originated by
the random event generator, the model then executes the appropriate sets of asso-
ciated events.

With this approach, users only need to change a particular set of associated events
once before running the model in order to have the change occur throughout the
simulation. If, for example, controller handoffs of aircraft were done automati-
cally via a data link, reducing pilot and controller task loading associated with the
handoff, an analyst would make the appropriate changes in the event task loads
and (possibly) eliminate the “aircraft changes communications frequency” event.

If desired, users can add or eliminate some a priori Events entirely. In the case of
adding Events, users must copy a text file of associated events into the appropriate
directory. Details are in Chapter 3.

Two sets of a priori Events reside in the baseline scenarios. One contains the
Events associated with flights as they actually occurred. The flights used the cur-
rent point-to-point system of air navigation based on ground-based navigational
radios. The flights were conducted under positive FAA control by ground-based
controllers using conventional voice communications radios. The other set of
events contains the wind-corrected great circle flight (so-called “free flight”)
tracks for the same flights. This enables the user to compare current navigation
procedures and free-flight procedures.

Description of Simulation Events

2-3

In addition to modifying the events associated with one or more primary Events,
and/or changing the primary Event file, users can, if desired, also read in an en-
tirely new primary Event text file. This would be appropriate if a user wishes to
analyze a different set of flights.

3-1

Chapter 3

Technical Design

This chapter contains the technical design for the Functional Analysis Model
(FAM 2.0). Sections detail each object and included elements, methods, and files.
The environment, MODSIM III, is an asynchronous, object-oriented, simulation
language on UNIX and other platforms. MODSIM uses the C++ programming
language to generate an executable file, making the model extremely portable.

This chapter contains computer commands and code listings of file contents. For
clarity, we use the following convention:

◆ Computer commands are in this font. Embedded file names, paths, and
flags set by the user are in italics and enclosed in < >.

◆ Code listings of file contents are in this font. Again, embedded file names,
paths, and flags set by the user within a file listing are in italics and en-
closed in < >.

You should substitute the appropriate entry for your simulation when you en-
counter italicized text enclosed in <.> in a program listing.

The following are the two main methods in MODSIM:

◆ ASK Methods. These are methods or functions that are members of ob-
jects and are executed synchronously, i.e., in the same way as any function
or subroutine is executed in C/C++

◆ TELL Methods. These are methods that are scheduled for execution at a
future time. Control comes back immediately to the calling method before
the TELL Method is actually executed.

The TELL Methods allow for asynchronous execution of events. As an event is
generated, it is placed in an execution queue for execution at its scheduled execu-
tion time, even if there are previously generated events scheduled for execution at
a later time. In other words, MODSIM executes events in the order of their exe-
cution time, not in the order in which the events are generated. The user (or pro-
grammer) simply sets up the event queue and, upon the internal StartSimulation()
command, the MODSIM environment and program takes over the execution of all
events as necessary. MODSIM also has the advantage of being able to generate
and remove objects from the simulation during the simulation run. This capability
enables FAM 2.0 to only have aircraft objects in the simulation for those flights
that are actually active at that point in the simulation.

3-2

PROGRAM DESCRIPTION

FAM 2.0 executes from the UNIX command line and at execution requires two
mandatory input files:

◆ Scenario file

◆ Output file name.

For more detail about these input files, see the companion document, Aircraft/Air
Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

PROGRAM MODULES

The FAM 2.0 program is composed of a number of program modules. All
MODSIM programs run from a main module. The FAM 2.0 main module code
listing is in Figure 3-1.

Figure 3-1. FAM 2.0 Main Module Code Listing

//MAIN MODULE fam

BEGIN
{scenario file and output file are user input}
processCommandLine (scenarioFile, outputFile);
readScenarioFile (scenarioFile);
processScenarioFile;

IF there are no ERRORS
NEW (outStream);
ASK outStream TO Open (outputFile, Output);

{finalReport object is responsible for printing the final report}
NEW (finalReport);

{simulationEnd is a user input}
TELL finalReport TO print IN simulationEnd;

StartSimulation;
END IF;
END MODULE.

Technical Design

3-3

Table 3-1 contains the descriptions of the other FAM 2.0 program modules.

Table 3-1. Program Module Descriptions

Module Description

DaircraftMod.mod Definition of aircraftObj and related methods

DairportContMod.mod Definition of airportcontrollerObj and related methods

DAOCMod.mod Definition of AOCObj1 and related methods

DassocevtMod.mod Definition of assocevtObj and related methods

DchannelMod.mod Definition of channelObj and related methods

DerrorMod.mod Definition of famerrorObj and related methods

DfamStreamMod.mod Definition of famstreamObj and related methods

DfinalReportMod.mod Definition of finalReportObj and related methods

DglobalMod.mod Definition of various global objects and variables

DloadMod.mod Definition of loadObj and modeTypeloadObj and related methods

DoutputStatMod.mod Definition of outputStatObj and related methods

DprimaryEvtMod.mod Definition of primaryEvtObj and related methods

DprocedureMod.mod Definition of procedures

DsectorMod.mod Definition of sectorObj and related methods

DsimMod.mod Definition of simObj and related methods

DstatMod.mod Definition of iStatObj and rStatObj and related methods

DTRACONContMod.mod Definition of TRACONControllerObj and related methods

DtriggerMod.mod Definition of trigEvtObj and related methods

IaircraftMod.mod Implementation of aircraftObj and related methods

IairportContMod.mod Implementation of airportcontrollerObj and related methods

IAOCMod.mod Implementation of AOCObj and related methods

IassocevtMod.mod Implementation of assocevtObj and related methods

IchannelMod.mod Implementation of channelObj and related methods

IerrorMod.mod Implementation of famerrorObj and related methods

IfamStreamMod.mod Implementation of famstreamObj and related methods

IfinalReportMod.mod Implementation of finalReportObj and related methods

IglobalMod.mod Implementation of various global objects and variables

IloadMod.mod Implementation of loadObj and modeTypeloadObj and related methods

IoutputStatMod.mod Implementation of outputStatObj and related methods

IprimaryEvtMod.mod Implementation of primaryEvtObj and related methods

IprocedureMod.mod Implementation of procedures

IsectorMod.mod Implementation of sectorObj and related methods

IsimMod.mod Implementation of simObj and related methods

IstatMod.mod Implementation of iStatObj and rStatObj and related methods

ITRACONContMod.mod Implementation of TRACONControllerObj and related methods

ItriggerMod.mod Implementation of trigEvtObj and related methods

Mairport.mod Implementation of main module

Note: Airline Operations Center (AOC).

3-4

GLOBAL LIST AND OVERALL MODEL DIAGRAM

Figure 3-2 shows the hierarchy of the significant program global lists for FAM
2.0. Table 3-2, which follows, contains a description of these lists.

Figure 3-2. Program Global List Hierarchy

Assoc Evt i
Assoc Evt i+1
. . .
Assoc Evt i+k

747

Assoc Evt i
Assoc Evt i+1
. . .
Assoc Evt i+n

DEF

Sect_Chg

Assoc Evt i
Assoc Evt i+1
. . .
Assoc Evt i+m

DEF

Depart

. . .

Event
Dict ionary

Tower
G round
Clearance
O ther

Denver Int 'l

Tower
G round
Clearance
O ther

Colorado
Springs

Airport
Type tit le here

747

737

Turboprop

. . .

A ircraft
Dict ionary

UA1707
(747)

US 623
737

AA4327
(Turboprop)

. . .

A ircraft
List

Sector 1

Sector 2

. . .

Sector 99

Sector
List

IAD
DEN
CO S
. . .

UA

BWI
DEN
. . .

US

BWI
DEN
. . .

AA

. . .

AOC

DEN N. App
DEN N. Dep

Controller 1

DEN S. App

Controller 2

Den S. Dep

Controller 3

CO S App & Dep

Controller 4

. . .

TRACO N

G lobal L ists

Table 3-2. Global List Descriptions

Global list Description

EventDictionary List of primary Events and their associated event list(s)

aircraftDictionary List of aircraftObj; one for each type of aircraft (e.g., 747) with all of
its loads

aircraftList List of aircraftObj; one for each instance of aircraft (e.g., UA1707)

aircraftTypeList List containing the names of each unique aircraft type

sectorDictionary List of sectorObj; one for each type of sector (e.g., sector_A) with all
of its loads

sectorList List of sectorObj; one for each instance of sector (e.g., sector 54)

sectorTypeList List containing the names of each unique sector type

AOCDictionary List of AOCObj; one for each type of AOC (e.g., UA) with all of its
loads

Technical Design

3-5

Table 3-2. Global List Descriptions (Continued)

Global list Description

AOCList List of AOCObj; one for each instance of sector (e.g., UABWI)

AOCTypeList List containing the names of each unique AOC type

aptContDictionary List of airportControllerObj; one for each type of airport controller
(e.g., all_colorado) with all of its loads

aptContList List of airportControllerObj; one for each instance of sector (e.g.,
colorado_tower)

aptContTypeList List containing the names of each unique airport controller type

TRACONContDictionary List of TRACONControllerObj; one for each type of TRACON con-
troller (e.g., denver_area) with all of its loads

TRACONContList List of TRACONControllerObj; one for each instance of sector (e.g.,
denver_approach)

TRACONContTypeList List containing the names of each unique TRACON controller type

TRACONAptPosList List of airports and positions for each TRACON controller

channelList List of channels used for all simulation objects

activationList List containing the activations times of all aircraft

eventTimeList List containing the times of all events in the a priori event file

AOCNameList List of AOC names

airportNameList List of airport names

TRACONNameList List of TRACON names

usedAssocEvtList List to store old associated events for later cleanup

usedTriggerList List to store old primary Events for later cleanup

MODEL PROCEDURES

FAM 2.0 has several procedures that read and validate user input files. Procedures
are different from ASK and TELL Methods because they are not affiliated with
any objects. Procedures are traditional subroutines that are called directly from the
main module to process various user inputs.

The following list explains some key procedures for FAM 2.0. All procedures are
contained in IprocedureMod.mod and the corresponding definitions are contained
in DprocedureMod.mod. A partial list of the FAM 2.0 procedures follows. These
procedures are key in creating and searching lists.

3-6

Procedure name: checkAOCName
Input: name
Output: TRUE/FALSE
Description: Check Airline Operations Center (AOC) name to ensure it exists in
AOClist

◆ Procedure name: checkAirportName
Input: name
Output: TRUE/FALSE
Description: Check airport name to ensure it exists in airportlist

◆ Procedure name: checkTraconName
Input: name
Output: TRUE/FALSE
Description: Check TRACON name to ensure it exists in TRACONlist

◆ Procedure name: lookupAircraftDictionary
Input: aircraft type
Output: aircraftObj
Description: Match the aircraft type (e.g., 747) and retrieve the corre-
sponding aircraftObj from aircraftDictionary list containing all its loads

◆ Procedure name: lookupAircraftList
Input: airline, flight number
Output: aircraftObj
Description: Lookup airline and flight number and retrieve the aircraftObj
with matching airline and flight number (e.g., UA1707)

◆ Procedure name: lookupSectorDictionary
Input: sectorType
Output: sectorObj
Description: Match the sector type (e.g., sectorA) and retrieve the corre-
sponding sectorObj from sectorDictionary list containing all its loads

◆ Procedure name: lookupSectorList
Input: sectorID
Output: sectorObj
Description: Lookup sector ID and retrieve the sectorObj with matching
sector identifier (e.g., sector54)

◆ Procedure name: readEventDicFile
Input: event dictionary file name
Output: (none)
Description: Reads the event dictionary as specified in the file name (e.g.,
event.dic)

Technical Design

3-7

• Procedure name: allocateGlobalLists
Input: (none)
Output: (none)
Description: Allocates all global lists for the model

◆ Procedure name: deallocateGlobalLists
Input: (none)
Output: (none)
Description: Deallocates all global lists for the model

◆ Procedure name: initializeGlobalLists
Input: (none)
Output: (none)
Description: Initialize each global list with appropriate objects

◆ Procedure name: printGlobalLists
Input: (none)
Output: (none)
Description: Prints information about members of each global list

◆ Procedure name: readTrigEvtFile
Input: a priori event file name (e.g., trig.evt)
Output: (none)
Description: Reads event file line by line. For each vector or row in the
event file:

◆ Create a trigevtObj and call it trigger

➤ Schedule it for execution, (e.g., TELL trigger TO processTrigger IN
trigger.time)

◆ Procedure name: addChannelToChannelList
Input: channelPos, channelValue
Output: (none)
Description: Adds channel to global channel list

◆ Procedure name: getPrimaryEvtPtr
Input: eventName
Output: primaryevtObj
Description: Searches the event dictionary for an exact match for primary
Event and returns a pointer to the event

◆ Procedure name: doesPrimaryExist
Input: event name
Output: TRUE/FALSE
Description: Returns whether the primary Event exists or not in the event
dictionary

3-8

◆ Procedure name: lookupAssociatedEvtList
Input: primaryEvtName, ac1Type, ac2Type, sector1Type, sector2Type
Output: QueueObj
Description: Given a primary event name, aircraft 1 type, aircraft 2 type,
sector 1 type and sector 2 type, lookup the corresponding associated event
list

◆ Procedure name: readTypeFile
Input: file name, type
Output: type file name
Description: For each type specified in the file, create a typeObj in the cor-
responding global list (e.g., aircraftTypeList, sectorTypeList, etc.)

◆ Procedure name: buildLoad
Input: loadList, mode, Type, Load, pEvtName, aEvtName, modeName,
typeName, maxIndex
Output: (none)
Description: When reading the load file for a particular object (e.g.,
747.ac), build the load for various personnel/radio/equipment for this ac-
tivity [specified by primary event (pEvtName), associated event
(aEvtName)] for each mode (modeName) and mate-type (typeName). Add
the loads to the input load list (loadList).

◆ Procedure name: doesTypeExist
Input: typeName, simObjType
Output: TRUE/FALSE
Description: Given a type name (e.g., sectorA) and simObj type (e.g., sec-
tor), check whether this type exists in sectorType list

◆ Procedure name: lookupSectorType
Input: sector ID
Output: sector type
Description: Given a sector ID (e.g., sector54), lookup its type (SectorC)

◆ Procedure name: lookupAircraftType
Input: airline, flight number
Output: aircraft type
Description: Given airline and flight number (e.g., UA1707), lookup its
type (777)

◆ Procedure name: readSectorDicFile
Input: file
Output: (none)
Description: Read the sector dictionary file (e.g., sector.dic) and set up the
sectorList (global list)

Technical Design

3-9

◆ Procedure name: lookupAOCDictionary
Input: AOCType
Output: AOCObj
Description: Match the AOC type (e.g., UA) and retrieve the correspond-
ing AOCObj from AOCDictionary list containing all its loads

◆ Procedure name: lookupAOCList
Input: AOC name
Output: AOCObj
Description: Lookup AOC name and retrieve the AOCObj with matching
AOC identifier (e.g., UABWI)

◆ Procedure name: lookupAOCType
Input: AOC name
Output: AOC type
Description: Given AOC name (UABWI), lookup its type (UA)

◆ Procedure name: readAOCDicFile
Input: AOC dictionary files
Output: (none)
Description: Read the AOC dictionary file (e.g., AOC.dic) and set up the
AOC list (global list)

◆ Procedure name: lookupAptContDictionary
Input: airport controller type
Output: airportControllerObj
Description: Given an airport controller type (e.g., tower or all_colorado),
return the airportControllerObj block from the airport dictionary contain-
ing all its loads

◆ Procedure name: lookupAptContList
Input: airport name, controller name
Output: airportControllerObj
Description: Given an airport name (e.g., colorado) and a controller name
(e.g., ground), return the airportControllerObj block from the airport list

◆ Procedure name: lookupAptContType
Input: airport name, controller name
Output: type name
Description: Given an airport name (e.g., colorado) and a controller name
(e.g., ground), return its type (e.g., all_colorado)

◆ Procedure name: readAirportDicFile
Input: airport dictionary file
Output: (none)

3-10

Description: Read the airport dictionary file (e.g., airport.dic) and set up
the airport list (global list)

◆ Procedure name: lookupTraconController
Input: TRACON name, airport name, position name
Output: TRACONControllerObj
Description: Given a TRACON name (e.g., denver_TRACON), an airport
name (colorado), a position (e.g., final), return the corresponding TRA-
CONControllerObj block (e.g., controller_THREE)

◆ Procedure name: readTraconDicFile (file)
Input: TRACON dictionary file name
Output: (none)
Description: Read the TRACON dictionary file (e.g., TRACON.dic) and
set up the TRACON controller list (global list)

◆ Procedure name: lookupTraconContDictionary
Input: type name
Output: TRACONControllerObj
Description: Given a TRACON controller type (e.g., denver_area), return
the TRACONControllerObj block from the TRACON dictionary contain-
ing its loads

◆ Procedure name: lookupTraconContList
Input: TRACON name, controller name
Output: TRACONControllerObj
Description: Given a TRACON name (e.g., denver_TRACON) and a con-
troller name (e.g., controller_THREE), return the TRACONControllerObj
block from the TRACON list (global list)

◆ Procedure name: readRandomEvtFile
Input: random event file name
Output: (none)
Description: Read and process the list of random events (e.g., file
rand.evt)

◆ Procedure name: readScenarioFile
Input: scenario file
Output: (none)
Description: Read the scenario file (scenario.sc)

◆ Procedure name: processScenarioFile
Input: (none)
Output: (none)
Description: Process and trap errors in the scenario file

Technical Design

3-11

◆ Procedure name: processCommandLine
Input: scenario file, output file
Output: (none)
Description: Parse the command line for FAM 2.0 execution at the UNIX
prompt

◆ Procedure name: getDeactivationTime
Input: airline, flight number
Output: (none)
Description: Get the deactivation time for a particular flight, given its air-
line and flight number, from the aircraft list

SIMULATION OBJECTS

A simulation object represents a person (pilot, controller, dispatcher), communi-
cations device (radio), or equipment system (radar, computer, etc.). A simulation
object can also be a collection of other simulation objects, such as an aircraft,
which contains simulation objects representing pilots, radios, and equipment.
Simulation objects perform activities and/or collect simulation statistical data.
The loads for performing the events for each personnel, radio, and equipment are
contained in the load file. Examples of simulation objects are aircraft, sector,
AOC, airport controller and TRACON controller. Figure 3-3 diagrams the vari-
ous kinds of simulation objects.

Figure 3-3. Simulation Object Class

aircraftO bj aircraftO bj aocO bj airportControllerO bj TRACO NControllerO bj

simO bj

A simulation object contains sets (queues) of controllers, radios, and equipment
depicted in Figure 3-4.

3-12

Figure 3-4. Simulation Object Contents

. . .

controllerQue:

controllerObj

radioQue:

commDevObj

equipmentObj

equipmentQue:

simObjType (e.g., AIRCRAFT, SECTOR, AOC, AIRPORT, TRACON)
typeName (e.g., 747, SECTOR_A, UA, TOWER, DENVER_TRA)
loadList Contains loads for a particular object (e.g., aircraftObj,

Controller Object (controllerObj)

There are three types of controller objects, shown in Figure 3-5.

Figure 3-5. Types of Controller Objects

controllerObj

pilot dispatcher controller
Used in Aircraft Used in AOC Used in sector, airportController &

traconController

System Object (sysObj)

System objects can be either communications device objects (commDevObj) or
equipment system objects (equipmentObj), as shown in Figure 3-6.

Figure 3-6. Types of System Objects

sysObj

commDevObj equipmentObj

Technical Design

3-13

Table 3-10 on page 3-34 contains details on statistical counters for the con-
trollerObj and sysObj.

Aircraft Object (aircraftObj)

The aircraft object (aircraftObj) is a type of simulation object (simObj). In addi-
tion to the data fields and methods inherited from simObj, aircraftObj has airline,
flight number, activation time, and deactivation time. Figure 3-7 is a diagram of
an aircraft object.

Figure 3-7. Aircraft Object Diagram

Variables:

airline
flightnumber
activationtime
deactivationtime
LoadList

Pilot1

Radio1

Pilot2 Pilot3

Radio2 Radio3 Radio10

Equipment1 Equipment2 Equipment3 Equipment10

controllerObj

commDevObj

equipmentObj

The aircraft dictionary (aircraftDictionary) is a list holding different types of air-
craft. For example, if there are only two types of aircraft, 747 and 777, then this
list would point to two aircraft objects. Each of these two aircraft objects will
contain all the loads for various combinations of primary Event, associated event,
mode, and mate-type.

The aircraft list (aircraftList) is a list holding all the instances of aircraft in the
model. For example, if the model has four aircraft (UA1701, UA1702, UA1801,
and UA1802), the list would point to four aircraft. The records in the aircraftList
do not contain the actual loads; the loadList points to the corresponding aircraft
type object in the aircraftDictionary. Figure 3-8 diagrams this relationship.

3-14

Figure 3-8. Relationship of Aircraft Files

747 777

aircraftDictionary loadList

SECT_CHG

CALL_AC

DEF
DEF

ORG
747

DST
747

SECT_CHG

INIT_CALL

DEF
DEF

ORG
777

DST
Turbo

SECT_CHG

REQ_ACC

DEF
DEF

ORG
UA

loadList

SECT_CHG
AC_ACK

DEF
DEF

ORG
UA

DST
747

SECT_CHG

INIT_CALL

DEF

DEF

ORG

747

DST
UA

SECT_CHG

AOC_AC

DEF
DEF

DST
747

aircraftList
UA1801

LoadList *
UA1802

LoadList *
UA1701

LoadList *
UA1702

LoadList *

aircraftObj of type 747 aircraftObj of type 777

DST
US

ORG
UA

Similarly, the sector, AOC, airport controller, and TRACON controller objects are
defined this way. Each simulation object has its own dictionary and list:

◆ sectorObj has sectorDictionary and sectorList

◆ aocObj has aocDictionary and aocList

◆ airportControllerObj has aptContDictionary and aptContList

◆ traconControllerObj has traconContDictionary and traconContList.

Load Object (loadObj)

Task, communications, and equipment loads are implemented via a complex data
structure. The data structure involves building and searching multiple linked lists.
The complexity is due to the requirement of varying loads by mode (i.e., whether
the object is the originating object [ORG] or destination object [DST] of the
event) and mate-type (object type of mate) for a particular event.

Technical Design

3-15

For example:

//C1 = controller1; R1 = Radio1; EQ1 = Equipment1
//PRIMARY_EVT ASSOC_EVT MODE MATE-TYPE C1 R1 EQ1
SECT_CHG CALL_AC ORG 747 2 2 2
SECT_CHG CALL_AC DST SECTOR_A3 3 3
SECT_CHG CALL_AC DEF 747 2 2 3
SECT_CHG CALL_AC ORG DEF 2 2 2
SECT_CHG CALL_AC DEF DEF 2 2 2

The above load will be implemented via the data structure shown in Figure 3-9.

Figure 3-9. Load Object Data Structure

PrimaryEvtName = SECT_CHG
AssociatedEvtName = CALL_AC

defaultLoad:

modeTypeLoadList:

(modeTypeLoadObj)

modeTypeLoadObj

modeTypeLoadObj

modeTypeLoadObj

modeTypeLoadObj

DEF
DEF 2 2 2

ORG
DEF

2 2 2

DEF
747

2 2 3

DST
SECTOR_A

2 3 3

ORG
747

3 2 2

LOOKUP LOAD METHOD

The lookup load method (lookupLoad in IsimMod.mod) builds and searches the
loadObj data structure. It requires five parameters in order to retrieve a load value
for a particular activity. The parameters are primary Event name, associated event
name, mode, mate-type, and an index. The first two are self-explanatory. The
meanings of the other parameters are:

3-16

◆ Mode. If the simulation object participates in an activity as the

➤ origin, then the mode is ORG;

➤ destination, then the mode is DST; and

➤ DEF may be used to specify either mode.

◆ Mate-type

➤ If mode is ORG, the mate is DST, and the mate-type is its object type
(e.g., 747, SECTOR_A, UA).

➤ If mode is DST, the mate is ORG, and the mate-type is its object type
(e.g., 747, SECTOR_A, UA).

◆ index. An integer value that references a particular control-
ler/radio/equipment within the simulation object

The pseudocode for the lookupLoad method is shown in Figure 3-10.

Figure 3-10. LookupLoad Pseudocode

BUILD LOAD

The modeTypeLoadObj contains the mode, mate-type, and a list of load values.
The build load procedure (buildLoad in IprocedureMod.mod) requires seven pa-
rameters in order to build a list of modeTypeLoadObj to hold the load values of a
particular activity. See Figure 3-9. The parameters are

◆ the loadList from the simulation object,

◆ the modeTypeLoad object,

◆ the primary Event name,

◆ the associated event name,

◆ the mode,

FOR each load in the load list
Match the primary Event and associated event name

Find the exact mode and mate-type
If not found, find DEF for mode and exact mate-type
If not found, find exact mode and DEF for mate-type
If not found, find DEF for mode and DEF for mate-type

If found, retrieve load value
If not found, THEN it is an error

Technical Design

3-17

◆ the mate-type, and

◆ the maximum number of loads for the activity.

Once the modeTypeLoad list is built, a load value along with its index can be in-
serted via method setLoad of the modeTypeLoad object.

The pseudocode for the buildLoad procedure is shown in Figure 3-11.

Figure 3-11. Pseudocode for buildLoad Procedure

CHANNEL OBJECTS

Similar to simulation objects, channel objects gather statistics of communication
(e.g., the communication time between a pilot and personnel of the tower con-
troller) between simulation objects via communications devices such as radios.
The channel object must be acquired as a resource object.

ChannelList

Figure 3-12 is an example of activities of simulation objects request channels at
various times during simulation. In this example, Channel 1.0 is used by Sector 1
and UAIAD (an AOC). If Channel 1.0 is in use by one of these objects, it cannot
be simultaneously used by the other. In this event, a communication involving the
other object is queued until Channel 1.0 is free.

If primary Event and associated event name already exist in
the loadList

If mode and mate-type are DEF
Create a default modeTypeLoadObj for the loadObj

ELSE
Add a new modeTypeLoadObj to the loadObj

ELSE IF primary Event and associated event name do not exist
in the loadList

Create a new loadObj
If mode and mate-type are DEF

Create a default modeTypeLoadObj for the loadObj
ELSE

Add a new modeTypeLoadObj to the loadObj

3-18

Figure 3-12. Communications Example

ChannelList Channel 1.0 Channel 2.0 Channel 3.1 Channel 4.5

TowerCont

USDCA

channelObj

GroundCont

Sector_1

UAIAD

Lock Channel

The lock channel method (lockChannel in module IsimMod.mod) is called from
method commenceEvt. Once a channel is requested by an activity, it will be
locked until it completely serves that activity. While a channel is locked, requests
from other simulation objects for that channel will be queued. The pseudocode for
method lockChannel is in Figure 3-13.

Figure 3-13. Method lockChannel Pseudocode

Find the first radio in the commQue that has load value
greater than zero

Retrieve the channel value from the commDevObj
Find the channel object associated with this channel value
Lock the channel

Technical Design

3-19

Figure 3-14 shows the relationship between simObj and channelObj.

Figure 3-14. Relationship Between simObj and channelObj

channel 1.0

channelObj

sectorObj

Sector_1

C1 C1

C1 C1

Sector_1
R1

channelList

sectorList

Unlock Channel

The unlock channel method (unlockChannel in module IsimMod.mod) is called
from method commenceEvt. When a channel finishes serving an activity, it will be
released to serve other activities. The pseudocode is shown in Figure 3-15.

Figure 3-15. Method unlockChannel Pseudocode

EVENT PROCESSING

FAM 2.0 processes events dynamically during the simulation run. It reads the
primary Events from the a priori event file (named trig.evt), which contains a set
of primary Event vectors (records). Before simulation start, FAM 2.0 retrieves the
associated event list for each primary Event. Table 3-3 contains a short sample
trig.evt file with three primary Event vectors.

Unlock the channel
Update statistics for the channel

3-20

Table 3-3. Sample trig.evt File

EVENT

1

TIME

2

AL

3

FN

4

AC_T

5

ALT_
AL

6

ALT_
FN

7

SCT1

8

SCT2

9

ARPT

10

TRC

11

AOC

12

ACCHNL

ACTIVATE_AC 1000 UA 1707 747 NULL 0 1 0 NULL NULL NUL
L

0.0

SECT_CHG 1000 UA 1707 NULL NULL 0 1 2 DEN DEN NUL
L

0.0

DEACTIVATE_AC 4000 UA 1707 NULL NULL 0 2 0 NULL NULL NUL
L

0.0

Notes:
1. TIME=Simulation time of primary Event initiation.
2. AL=Airline of primary (#1) aircraft.
3. FN=Flight number of primary (#1) aircraft.
4. AC_T=Type of primary (#1) aircraft.
5. ALT_AL=Airline of secondary (#2) aircraft.
6. ALT_FN=Flight number of secondary (#2) aircraft.
7. SCT1=Identification number of primary (losing) sector.
8. SCT2=Identification number of secondary (gaining) sector.
9. ARPT=Name of airport.
10. TRC=Name of TRACON.
11. AOC=Name of AOC.
12. ACCHNL=Communications channel for aircraft-to-aircraft communications.

EVENT DICTIONARY

The event dictionary contains the file names of the sets of associated events for
each primary Event (a priori or random). There can be more than one associated
event list for each primary Event, since the associated events can vary with the
types of aircraft and sectors participating in the primary Event. The dictionary also
introduces priority of the event. The priority determines the rank of service prior-
ity when events are queued up for processing at various simulation servers or ob-
ject, like sectors, AOCs, and airport and TRACON controllers.

Table 3-4 contains a sample event dictionary showing the file format.

In the event dictionary, NULL indicates that the field (column) does not apply to
that Event. DEF (default) indicates that the associated event file for that record
(row) should be used in all cases unless the type of the objects involved in the ac-
tual event are listed in another record. For example, referring to Table 3-4, there
are five sector change (SECT_CHG) event records, the first five rows of the table.
The first record applies to 747 aircraft where both sectors are type SECTOR_A.
Similarly, the second record applies to 747 aircraft where the Sector 1 type is
SECTOR_A and the Sector 2 type is SECTOR_B. The third and fourth records ap-
ply when the aircraft is a 777 and the sectors are the types shown. The fifth record,
with DEF, applies to all cases not covered by the first four records.

Technical Design

3-21

Table 3-4. Sample Event Dictionary File

EVENT

1

AC1TYP

2

AC2TYP

3

SCT1TYP

4

SCT2TYP

5

ASCEVT_FILE

6

PRIORITY

SECT_CHG 747 NULL SECTOR_A SECTOR_A sector_chg747.evt 5.0

SECT_CHG 747 NULL SECTOR_A SECTOR_B sector_chg747.evt 5.0

SECT_CHG 777 NULL SECTOR_B SECTOR_B sector_chg777.evt 5.0

SECT CHG 777 NULL SECTOR_B SECTOR_A sector_chg777.evt 5.0

SECT_CHG DEF NULL DEF DEF sector_chgdef.evt 5.0

DEPART DEF NULL NULL NULL departure.evt 5.0

APPROACH DEF NULL NULL NULL approach.evt 5.0

ALT_CHG DEF NULL NULL NULL altitude_change.evt 10.0

CONFLICT DEF NULL NULL NULL conflict.evt 10.0

CATCH_FIRE DEF NULL NULL NULL catch_fire.evt 15.0

Notes:
1. Type of primary aircraft (1).
2. Type of second aircraft (2).
3. Type of primary or losing sector (1).
4. Type of secondary or gaining sector (2).
5. Associated event file name.
6. Event priority.

In operation, FAM 2.0 first looks for a record with a match in the appropriate type
fields. If it finds one, it uses the associated event in that record. If no match is
found, it will look for DEF and use that associated event file. If no default row is
found, then the FAM 2.0 will generate an error and stops. For example, if the air-
craft type 747 is the primary aircraft participating in an event, FAM 2.0 will use
the associated event if it finds a record with 747 in AC1TYP. If FAM 2.0 finds
no exact match between 747 and AC1TYP, then it will search for DEF under
AC1TYP. If it finds no such record FAM 2.0 generates an error message and
stops.

LOOKUP ASSOCIATED EVENT LIST (LOOKUPASSOCIATEDEVTLIST)

The lookup associated event list method (lookupAssociatedEvtList) requires five
parameters in order to retrieve an associated event list. The parameters are

◆ primary Event name,

◆ Aircraft 1 type,

◆ Aircraft 2 type,

◆ Sector 1 type, and

◆ Sector 2 type.

3-22

The pseudocode is shown in Figure 3-16.

Figure 3-16. Method lookupAssociatedEvtList Pseudocode

TELL Method Process Trigger

This method is used to process Events from the a priori event file (trig.evt). When
it is brought into the simulation, the first primary Event activates an aircraft (e.g.,
UA1707) at a scheduled simulation time. Other Events include sector changes and
the aircraft deactivation.

As an example, we repeat the sample trig.evt file from Table 3-3 in Table 3-5.

Table 3-5 has three primary Event vectors:

◆ UA1707 is activated under control of Sector 1 at simulation time 1000.

◆ UA1707 changes control from Sector 1 to Sector 2, also at simulation time
1000. Although scheduled for the same time, this Event will execute after
the activation Event since it is after the activation Event in trig.evt. (Had it
been before the activation Event, FAM 2.0 would have generated an er-
ror.)

FOR each primary Event in the eventDictionary
IF primary Event exists

FOR each Key in KeyList of the primary Event
IF AC1TYPE<>Key.AC1TYPE and DEF<>Key.AC1TYPE

Mark this key
END
FOR each Key in KeyList of the primary Event

IF AC2TYPE<>Key.AC2TYPE and DEF<>Key.AC2TYPE
Mark this key

END
FOR each Key in KeyList of the primary Event

IF SCT1TYPE<>Key.SCT1TYPE and DEF<>Key.SCT1TYPE
Mark this key

END
FOR each Key in KeyList of the primary Event

 IF SCT2TYPE<> Key.SCT2TYPE and DEF<> Key.SCT2TYPE
Mark this key

END
END
FOR each Key in KeyList of the primary Event

IF the Key is not Marked,
Return the associated event list

END
IF no associated event list is found, THEN returns the de-

fault associated event list
IF no default associated event list, THEN it is an error

Technical Design

3-23

◆ UA1707 is deactivated at simulation time 4000.

Once an a priori event vector is read from the trig.evt file, a trigger event object
block (trigevtObj) is allocated and filled in from the data row in file trig.evt and
then the trigger block is scheduled for execution in the future. The same
trigevtObj is used for random events.

Table 3-5. Sample trig.evt File

NAME

1

TIME

2

AL

3

FN

4

AC_T

5

ALT_ AL

6

ALT_FN

7

SCT1

8

SCT2

9

ARPT

10

TRC

11

AOC

12

ACCHNL

ACTIVATE_AC 1000 UA 1707 747 NULL 0 1 0 NULL NULL NULL 0.0

SECT_CHG 1000 UA 1707 NULL NULL 0 1 2 DEN DEN NULL 0.0

DEACTIVATE_AC 4000 UA 1707 NULL NULL 0 2 0 NULL NULL NULL 0.0

Notes:
1. TIME—Simulation time of primary Event initiation.
2. AL—Airline of primary (#1) aircraft.
3. FN—Flight number of primary (#1) aircraft.
4. AC_T—Type of primary (#1) aircraft.
5. ALT_AL—Airline of secondary (#2) aircraft.
6. ALT_FN—Flight number of secondary (#2) aircraft.
7. SCT1—Identification number of primary (losing) sector.
8. SCT2—Identification number of secondary (gaining) sector.
9. ARPT—Name of airport.
10. TRC—Name of TRACON.
11. AOC—Name of AOC.
12. ACCHNL—Communications channel for aircraft-to-aircraft communications.

TRIGGER EVENT OBJECT BLOCK (TRIGEVTOBJ)

The trigger event object block (trigEvtObj) contains the information shown in Ta-
ble 3-6.

Table 3-6. Trigger Event Object Block Contents

Field name Data type Description Comments

ID INTEGER Number of Trigger Event Mandatory

EVENT STRING Name of Trigger Event Mandatory

TIME REAL Execution Time of Trigger Event Mandatory

PRIORITY REAL Priority of the Event (e.g., 5.0) Mandatory

AC1AN STRING Identifier of Aircraft 1 (e.g., UA) Mandatory

AC1FL INTEGER Flight Number of Aircraft (e.g., 1707) Mandatory

AC1TYPE STRING Type of Aircraft (e.g., 747) Mandatory

AC2AN STRING Identifier of Aircraft 2 (e.g., UA) Optional

AC2FL INTEGER Flight Number of Aircraft 2 (e.g.,
1708)

Optional

SECT1NUM INTEGER Sector 1 number (e.g., 34) Optional

3-24

Table 3-6. Trigger Event Object Block Contents (Continued)

Field name Data type Description Comments

SECT2NUM INTEGER Sector 2 number (e.g., 99) Optional

AIRPORT STRING Name of Airport (e.g., DENVER) Optional

TRACON STRING Name of TRACON (e.g., DEN_TRA) Optional

AOC STRING Name of AOC (UA) Optional

CHANNEL REAL Channel value (e.g., 5.0) Optional

startNextAssocevt RESOURCEOBJ Trigger to start next associated event Mandatory

processTrigger TELL method Asynchronous method to process the
trigger. This method is used for a pri-
ori and random Events

ASSOCIATED EVENT OBJECT (ASSOCEVTOBJ)

The associated event object (assocevtObj) holds information about the associated
event that is taking place. For example, the primary Event Sector Change
(SECT_CHG), has many associated events. One such associated event is Initial
Call, which goes from the aircraft to the gaining sector. This Initial Call event is
then scheduled for the aircraft object:

TELL evt[ORG] TO commenceEvt IN evt[DLY]

CROSS-REFERENCE BETWEEN ASSOCEVTOBJ AND TRIGEVTOBJ

Since there is only one associated event file for each type of primary Event, and
the associated events in the file are executed each time that primary Event type
occurs in the simulation, FAM 2.0 uses keywords for the event originator (ORG)
and destination (DST) in the associated event file. FAM 2.0 translates these key-
words into pointers to the addresses of actual objects in the simulation at run time.
The model looks at various fields in the current trigEvtObj to resolve references
of origin and destination addresses in the assocevtObj. Table 3-7 shows the loca-
tion in the trigEvtObj object block for each generic identifier in associated events.

Table 3-7. Pointer Location in trigevtObj

Generic identifier Pointer location

AC trigevtObj[ac1an, ac1fn]

ALT_AC trigevtObj[ac2an, ac2fn]

L_SECT trigevtObj[sect1num]

G_SECT trigevtObj[sect2num]

SECT trigevtObj[sect1num]

AOC trigevtObj[AOC]

TOWER trigevtObj[airport]

Technical Design

3-25

Table 3-7. Pointer Location in trigevtObj (Continued)

Generic identifier Pointer location

GROUND trigevtObj[airport]

CLEARANCE trigevtObj[airport]

OTHER trigevtObj[airport]

APPROACH trigevtObj[TRACON]

DEPARTURE trigevtObj[TRACON]

FINAL trigevtObj[TRACON]

PSEUDOCODE FOR PROCESSTRIGGER METHOD

Figure 3-17 contains the pseudocode for the process trigger method
(processTrigger). To illustrate the process of assigning actual simulation ad-
dresses based on keywords, Figure 3-18 contains an example of a sector change
associated event block before setting of ORG and DST pointers during the simu-
lation. This is the event as it is derived from the event dictionary. Figure 3-19
shows how the originator and destination are changed to actual simulation objects.

Figure 3-17. ProcessTrigger Method Pseudocode

Find the matching primary Event in the Event Dictionary List
IF trigger name = ACTIVATE_AC

Activate a new aircraft and generated random events if
necessary

ELSE IF trigger name = DEACTIVATE_AC
IF no more activities involving this aircraft

Print statistics and deactivate it
ELSE

Print statistics and schedule the aircraft to deacti-
vate later

ELSE
Get the list of associated events for this Trigger Event
from the eventDictionary (See Figure 11)
Set all the ORG and DST pointers and MODE of each asso
cevtObj in the list to the proper objects (See Figure 12)

FOR each assocevtObj in the associated event list
Set evt[ORG] and evt[DST] according to Table 3-4
TELL evt.orgptr TO commenceEvt (SELF, newassoc, org, 0.0,
A PRIORI) IN evt.dly;

END

3-26

Figure 3-18. Associated Event Block Before Setting ORG and DST

assocevtObj

primname = SECT_CHG

assocname = INIT_CALL

ORG = AC

DST = G_SECT

DLY = 10.0

...

Figure 3-19. Associated Event Block After Setting ORG and DST

assocevtObj

primname = SECT_CHG

assocname =

ORG

DST

DLY = 10.0

...

UA1701 aircraftList

Sector_2 sectorList

OPERATION OF PROCESSTRIGGER

An example would probably best illustrate the operation of processTrigger. As-
sume that the sector change primary Event (SECT_CHG) simply involves the four
associated events shown in Table 3-8.

Table 3-8. Sample Sector Change Associated Events

Primary Event Associated event ORG DST DLY

SECT_CHG CALL_GSECT L_SECT G_SECT 0.0

SECT_CHG ACK_LSECT G_SECT L_SECT 10.0

SECT_CHG CALL_AC L_SECT AC 15.0

SECT_CHG CALL_SECT AC G_SECT 20

Technical Design

3-27

When the simulation reaches the scheduled time of a SECT_CHG Event,
processTrigger reads the associated event list. ProcessTrigger then places all four
events on the pending list for the simulation object specified as ORG for later
execution. ProcessTrigger uses method commenceEvt for all associated events (a
priori or random). In this example, processTrigger uses the following line to
schedule each associated event in the above list:

TELL evt[ORG] TO commenceEvt IN evt[DLY]

When all the associated events in our example have been scheduled, the pending
list will look like Figure 3-20.

Figure 3-20. Event Pending Lists for Sector Change Event

PendingLists UA1707

CommenceEvt
(CALL_SECT)

20.0

SECTOR_1

CommenceEvt
(CALL_GSECT)

0.0

SECTOR_2

CommenceEvt
(ACK_LSECT)

10.0

CommenceEvt
(CALL_GSECT)

0.0

There is a pending (event) list for each simulation object. In our example, with
three objects involving four associated events in the sector change, Sector 1 will
have two events and the other objects one apiece. The events are executed in time
order, so the first event to be executed is Call_GSectI, followed in order by
Call_AC, Call_Sector, and Ack_Lsect.

COMMENCE EVENT METHOD (COMMENCEEVT)

The commence event method (commenceEvt) is the main TELL method for
simObj. In fact, this is the method that is at the heart of all event processing for
FAM 2.0. All events, whether a priori or random, execute associated events via
commenceEvt. CommenceEvt is called from TELL method processTrigger in
ItriggerMod.mod only for the origin of an associated event. ProcessTrigger is the
method that is executed when the simulation time equals the scheduled time for an
a priori primary Event. Figure 3-21 shows the pseudocode for method
commenceEvt.

3-28

Figure 3-21. Method commenceEvt Pseudocode

IN trig : trigEvtObj;
IN evt : assocevtObj;
IN mode : STRING;
IN delta : REAL;
IN eventType : STRING;

//trig - block containing primary Event data
//evt - block containing Associated Event data
//mode - ORG or DST
//delta - wait time
//eventType - A PRIORI or RANDOM
BEGIN

IF simulation time > acdeactivationtime and the event
type is RANDOM,

THEN there will be no more random event allowed in
commenceEvt ().

ENDIF
IF simulation time > simulationEnd
THEN produce Warning message and quit
ELSE

//SETUP FOR EXECUTION OF ASSOCIATED EVENT
Set mate according to mode;
IF mode = ORG

NEW (actblk);
Store beginwaittime in actblk for both ORG and DST
Make sure that the previous associated event has

been completed
Reserve both ORG and DST (put in a request to

acquire the reserve resource)
Lock the occupied resource of SELF
Figure out which object (ORG/DST) will have its

channel occupied
IF it is AC-AC communication, lock channel

specified in TRIG.EVT
IF ORG <> DST, make the DST busy

deltadst = time we had to wait to occupy the DST
TELL DST TO commenceEvt

delta:= time we had to wait to occupy SELF
(i.e., ORG)

Release the reserved resource for ORIGIN and
DESTINATION

IF waitingTime > 0.0, update wait statistics for ORG
and DST

Technical Design

3-29

Figure 3-21. Method commenceEvt Pseudocode (Continued)

//START EXECUTION OF ASSOCIATED EVENT
FOREACH controller IN controllerQue

lookup load for this primary event, associated event,
mode and mate-type

IF load > 0.0 update all continuous tasking statistics
ASK each controller to transmit (load)
FOREACH radio IN commQue

lookup load for this primary event, associated event,
mode and mate-type

IF load > 0.0 update all continuous tasking statistics
ASK each radio to transmit (load)
FOREACH equipment IN equipmentQue

lookup load for this primary event, associated event,
mode and mate-type

IF load > 0.0 update all continuous tasking statistics
ASK each radio to transmit (load)

//FINISH EXECUTION OF ASSOCIATED EVENT
Release the startNextAssocevt resource in the TRIGGER

EVENT so that the next associated event can proceed
Now WAIT for Maximum duration maximum of all loads above
Unlock the appropriate channel for this activity
Release the occupied resource in this object (ORG/DST)

so that any events involving this object can proceed
IF simObjType = AIRCRAFT and we are past its

deactivation time,
IF mode = ORG
THEN dispose of the actblk

THEN deactivate it now
END METHOD;

BEGIN
IF simulation time > acdeactivationtime and the event

type is RANDOM,
THEN there will be no more random event allowed in

commenceEvt ().

IF simulation time > simulationEnd
THEN produce Warning message and quit
ELSE

//SETUP FOR EXECUTION OF ASSOCIATED EVENT
Set mate according to mode;
IF mode = ORG

NEW (actblk);
Store beginwaittime in actblk for both ORG and DST
Make sure that the previous associated event has

been completed
Reserve both ORG and DST (put in a request to

acquire the reserve resource)

3-30

Figure 3-21. Method commenceEvt Pseudocode (Continued)

Lock the occupied resource of SELF
Figure out which object (ORG/DST) will have its

channel occupied
IF it is AC-AC communication,
THEN lock channel specified in TRIG.EVT
IF ORG <> DST,
THEN make the DST busy

deltadst = time we had to wait to occupy the DST
TELL DST TO commenceEvt

delta:= time we had to wait to occupy SELF (i.e., ORG)
Release the reserved resource for ORIGIN and

DESTINATION
IF waitingTime > 0.0, update wait statistics for

ORG and DST
START EXECUTION OF ASSOCIATED EVENT

FOREACH controller IN controllerQue
lookup load for this primary event, associated event,

mode and mate-type
IF load > 0.0

THEN update all continuous tasking statistics
ASK each controller to transmit (load)

FOREACH radio IN commQue
lookup load for this primary event, associated event,

mode and mate-type
IF load > 0.0

THEN update all continuous tasking statistics
ASK each radio to transmit (load)

FOREACH equipment IN equipmentQue
lookup load for this primary event, associated event,

mode and mate-type
IF load > 0.0

THEN update all continuous tasking statistics
ASK each radio to transmit (load)

FINISH EXECUTION OF ASSOCIATED EVENT
Release the startNextAssocevt resource in the TRIGGER

EVENT so that the next associated event can proceed
Now WAIT for Maximum duration = maximum of all loads

above
Unlock the appropriate channel for this activity
Release the occupied resource in this object (ORG/DST) so

that any events involving this object can proceed
IF mode = ORG
THEN dispose of the actblk
IF simObjType = AIRCRAFT and we are past its deactivation

time,
THEN deactivate it now

END METHOD

Technical Design

3-31

Random Event Processing

Random events are processed slightly differently than a priori events. For random
events, FAM 2.0 uses a uniform, real distribution to choose an event from the
random event file (rand.evt). For example, if rand.evt contains FIRE, ALT_CHG,
LOW_FUEL as random event types, when FAM 2.0 generates a random event,
each type has a 33.3 percent probability of being “chosen” as the random event
type.

TELL METHODS

Figure 3-22 shows the logic flow of random event TELL methods.

Figure 3-22. Logic Flow of Random Event TELL Methods

processTrigger (within ACTIVATE_AC)

generateRandomEvent

setupRandomEvent

generateRandomEvent

PROCESSING RANDOM EVENTS

Figure 3-23 shows the pseudocode for TELL method processTrigger, which is
executed when an aircraft is activated.

Figure 3-23. TELL method processTrigger

Figure 3-24 shows the pseudocode for TELL method generateRandomEvent.

//When activating an aircraft:
IF random_mode = TRUE
THEN schedule generateRandomEvent
//This method is contained in ItriggerMod.mod.

3-32

Figure 3-24. TELL method generateRandomEvent

TELL Method setupRandomEvent

The TELL method setupRandomEvent is very much like processTrigger in its
logic. This method is contained in IaircraftMod.mod. It sets up the ORG and DST
pointers of each associated event block and then schedules the associated events
via commenceEvt. The pseudocode for setupRandomEvent is shown in Fig-
ure 3-25.

//This TELL Method is contained in IaircraftMod.mod.
Find the activation and deactivation time of SELF (aircraft)
IF [(SimTime < deactivation time) AND (SimTime < simula-

tionEnd)]
WAIT until the AC has begun executing the first

associated event of its first a priori primary Event
REPEAT until [(SimTime < deactivation time) AND

(SimTime < simulationEnd)]
WAIT DURATION stream1.UniformReal (minInterRandomTime,

maxInterRandomTime);
IF (SimTime < deactivation time) AND (SimTime <

simulationEnd)
Select a random number from stream2.UniformInt

(1, 100) and depending on the number of random
Events (in rand.evt), pick a random Event for
simulation E.g., if there are 10 random Events,
and we picked 70, then we would choose random
Event #7 from the list

Increment numRandomEventsGenerated
Setup a trigger Event with all relevant for this

random primary Event
Lookup associated event list in the event

dictionary for this random primary Event
ASK SELF TO setupRandomEvent (assocevtlist, trigger

Event);
ENDIF

END REPEAT
ENDIF
END METHOD;

Technical Design

3-33

Figure 3-25. TELL Method setupRandomEvent Pseudocode

OUTPUT

The output statistics are defined for personnel (controllerObj), radio (sysObj), and
equipment (sysObj) of each simulation object (i.e., aircraft, sector, AOC,
TRACON controller, airport controller, and channel). There are nine statistics:

◆ MAX_WAITING—the maximum number of associated events waiting.

◆ AVE_QUE_LEN—the average queue length of associated events.

◆ MAX_WAIT_TIME—the maximum wait time for associated events.

◆ AVE_WAIT_TIME—the average wait time for associated events.

◆ NUM_SERVED—the number of associated events served.

◆ TOTAL_TASK_TIME—the total task time.

◆ PERC_TASKED—the total task time/simulation length.

◆ MAX_CONT_TIME—the longest period of continuous tasking.

◆ AVE_CONT_TIME—the average period of continuous tasking.

//The input parameters are:
IN aelist : QueueObj;
IN trig : trigEvtObj

BEGIN
Create a list of associated events called newassoclist
FOREACH assocevtblk IN aelist;

Increment eventctr
Create a assocevtObj called newassoc and clone the

associated event block from aelist
Set the ORG pointer of newassoc (based on keywords,

e.g., SECT, AC, TOWER, etc.)
Set the DST pointer of newassoc (based on keywords,

e.g., SECT, AC, TOWER, etc.)
Add the newassoc to newassoclist

END FOREACH

FOREACH newassoc IN newassoclist
TELL newassoc.orgptr TO commenceEvt (trig,

newassoc,org, 0.0, RANDOM) IN newassoc.dly
END FOREACH

Dispose of newassoclist
END METHOD

3-34

In addition, FAM produces statistics on the number of aircraft in each sector:

◆ SECTOR_ID—the sector ID.

◆ NUM_AIRCRAFT—the number of aircraft in that sector.

◆ MAX_AIRCRAFT—the maximum number of aircraft in that sector.

◆ AVE_AIRCRAFT—the average number of aircraft in that sector.

Resetting Output Parameters

Resetting output parameters is based on the user input of <stat_start> specified in
the scenario file. In IprocedureMod.mod, a TELL method resetOutputStat-
Counters is scheduled at stat_start time to wipe out any statistics collected so far
in various simulation objects. The statistics are actually stored in personnel
(controllerObj), radio (sysObj), and equipment (sysObj) of each simulation object.
The entire aircraft list, sector list, AOC list, TRACON controller list, and airport
controller list are traversed in order to reset the statistical counters of all the per-
sonnel/radio/equipment of each simulation object in these lists.

Gathering Output Statistics

The gathering of output statistics is done via LMONITORED objects of
MODSIM. The ASK method printQueStats, which belongs to personnel
(controllerObj) and radio/equipment (sysObj) of each simulation objects is prints
out all the statistics gathered for those objects.

WAITING TIME AND NUMBER OF WAITS STATISTICS

Waiting time and number of waits statistics are collected at the simulation object
level via LMONITORED real and integer data types. Table 3-9 lists the relevant
fields in simObj.

Table 3-9. Wait Statistics Fields in simObj

Statistics counters Type

waitingTime LMONITORED REAL

waitingTimeStats rStatObj

numberOfWaits LMONITORED INTEGER

numberOfWaitsStats iStatObj

These statistics are updated in method commenceEvt in IsimMod.mod. The data is
then copied to corresponding variables for the active personnel, radio, and equip-
ment in that simulation object for that associated event.

Technical Design

3-35

CONTINUOUS TASKING STATISTICS

The continuous tasking statistics are updated in method updateContTaskStats for
personnel (controllerObj) and radio/equipment (sysObj) in IsimMod.mod. This
method is called from commenceEvt.

Statistics of interest are the longest period of continuous tasking and average pe-
riod of continuous tasking. The method updateContTaskStats simply updates the
counter with the loads for the current associated event and keeps track of whether
or not the object (personnel/radio/equipment) has been continuously tasked.

NUMBER OF ACTIVITIES SERVED (NUMSERVED) STATISTIC

The number of activities served statistic is gathered in method transmit for per-
sonnel (controllerObj) and radio/equipment (sysObj) in IsimMod.mod. This
method is called from commenceEvt. Every time FAM 2.0 calls transmit() , it
increments numServed by 1.

CONTROLLER AND SYSTEMS OBJECTS STATISTICS

Table 3-10 shows the statistics counter variables in controllerObj and sysObj.

Table 3-10. Controller and Systems Objects Statistics Counters

Statistical counters Description

maxWaitingTime Maximum waiting time for associated events

aveWaitingTime Average waiting time for associated events

maxNumWaiting Maximum number of associated events waiting

aveNumWaiting Average number of associated events waiting

numServed Number of events served

totalTaskTime Total tasking time

contTaskTime Longest period of continuous tasking

contTaskTimeStats Statistics object for the continuous task time

intervalTotalTaskTime Period of continuous tasking

percTasked Total task time/simulation length

Final Report

In the module IfinalReportMod.mod, the TELL method Print produces the final
report for sectors, AOCs, TRACON controllers, airport controllers, channels, and
miscellaneous aircraft/sector statistics.1 If there are active aircraft at the end of the
simulation, then the statistics for these aircraft are printed at that time. This

1 The exception is the aircraft object type. The aircraft prints its own statistics before it deacti-

vates. All other simulation objects print their statistics at the time of the final report.

3-36

method is scheduled for execution in the main module. Figure 3-26 contains the
pseudocode to produce the final report.

Figure 3-26. Final Report Production Pseudocode

BEGIN
IF NumActPending > 0, produce Warning and StopSimulation

//AIRCRAFT STATISTICS (For aircraft that have not been
deactivated)
FOREACH aircraft IN aircraftList

ASK aircraft TO printACStats;
END FOREACH;
Print The number of aircraft in the model is
Print Column headers

//ARTCC STATISTICS
FOREACH sector IN sectorList

ASK sector TO printSectorStats;
END FOREACH;

//AOC STATISTICS
FOREACH AOC IN AOCList

ASK AOC TO printAOCStats;
END FOREACH;

//AIRPORT STATISTICS
FOREACH airport IN aptContList

ASK airport TO printAirportStats;
END FOREACH;

//TRACON STATISTICS
FOREACH TRACON IN TRACONContList

ASK TRACON TO printTRACONContStats;
END FOREACH;

//CHANNEL STATISTICS
Write out column headers
FOREACH channel IN channelList

ASK channel TO printStats;
END FOREACH;

//AIRCRAFT/SECTOR STATISTICS
Print Column headers of SECTOR_ID, NUM_AIRCRAFT,

MAX_AIRCRAFT, AVE_AIRCRAFT
FOREACH sector IN sectorList

write out the statistics
END FOREACH;
Report error or warning if there is any.

END METHOD;

Technical Design

3-37

Error Processing

ERROR MESSAGES

There are two different types of errors: file processing errors and run time errors
(errors occurring during the simulation run). Once an error is detected, FAM 2.0
will attempt to catch additional errors in the same file before quitting the model.
However, if the error is serious and the model cannot possibly continue, it will
quit. Upon quitting, FAM 2.0 will generate all the error messages and direct them
to the fam.err file. If the error occurs during file processing, then the correspond-
ing file name, column and row will be shown. This mechanism provides the flexi-
bility for the user to correct more than just one error.

Examples of file processing errors are

◆ missing a load value in the load file and

◆ a simulation object type does not exist.

Examples of run time errors are

◆ missing simulation object or a requested object no longer exists and

◆ a sector change occurs but the user does not specify the losing sector.

Appendix A contains a list of all error messages and their meanings.

WARNING MESSAGES

FAM 2.0 also identifies potential problems that might cause erroneous output sta-
tistics. These problems are considered to be nonfatal, and FAM 2.0 will continue
to execute. For example, if the user intends to deactivate an aircraft at time 1000,
and there are activities pending, then FAM will issue a warning message in
fam.err and schedule the aircraft for automatic deactivation. This will help the air-
craft complete its activities and gather all the necessary statistics before deactiva-
tion.

A-1

Appendix A

FAM 2.0 Error & Warning Messages

“Error: number of pilots must be one or more.”

“Error: number of communication devices must be zero or more.”

“Error: number of equipment must be zero or more.”

“Error: Random event ‘random event name’ does not exist.”

“Error: There is no AOC ‘aoc name’ for primary event ‘primary event name’ and
associated event ‘associated event name’ at time ‘t’ with delay ‘delay’
[MODE=ORG]”

“Error: There is no tower controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no ground controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no clearance controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no other controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no TRACON controller for approach with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=ORG]”

“Error: There is no TRACON controller for departure with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=ORG]”

“Error: There is no TRACON controller for final with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-

A-2

ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=ORG]”

“Error: There is no AOC ‘aoc name’ for primary event ‘primary event name’ and
associated event ‘associated event name’ at time ‘t’ with delay ‘delay’
[MODE=DST]”

“Error: There is no tower controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=DST]”

“Error: There is no ground controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=DST]”

“Error: There is no clearance controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=DST]”

“Error: There is no other controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘t’
with delay ‘delay’) [MODE=DST]”

“Error: There is no TRACON controller for approach with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=DST]”

“Error: There is no TRACON controller for departure with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=DST]”

“Error: There is no TRACON controller for final with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘t’ with delay ‘delay’)
[MODE=DST]”

“Error: number of controllers must be one or more.”

“Error: number of dispatchers must be one or more.”

“Error: File ‘file name’ does not exist.”

“Error: Error occurs while opening file ‘file name’.”

“Error: Expected ‘token’ (Error occurs in file ‘file name’ at line # and column #)”

FAM 2.0 Error & Warning Messages

A-3

“Error: Expected ‘=‘ (Error occurs in file ‘file name’ at line # and column #)”

“Error: ‘token’ is not a valid real number; a real value is expected.”

“Error: Expected a real value.”

“Error: Expected a string.”

“Error: Mode ‘type name’ is invalid.”

“Error: Type ‘type name’ does not exist.”

“Error: Loads expected in file ‘file name’.”

“Error: ‘token’ is not a valid integer number; an integer value is expected.”

“Error: Expected integer value.”

“Warning: There are pending activities at time ‘simulation time’. “

“Error: index value ‘value of index’ is out of range.”

“Error: Time of a priori event must be in increasing order.”

“Error: Time of activity for aircraft with airline ‘airline’ and flight number
‘flightnumber’ is less than its activation time.”

“Error: Time of activity for aircraft with airline ‘airline’ and flight number
‘flightnumber” is greater than or equal to its deactivation time.”

“Error: Primary event ‘primary event name’ is not in the event dictionary.”

“Error: Sector type ‘type name’ is not in the sector dictionary.”

“Error: AOC type ‘type name’ is not in the AOC dictionary.”

“Error: Airport controller type ‘type name’ is not in the airport controller diction-
ary.”

“Error: TRACON controller type ‘type name’ is not in the TRACON controller
dictionary.”

“Error: There is no TRACON controller for TRACON named ‘TRACON name’
and controller named ‘controller name’. “

“Error: Airport position must be defined in the TRACON dictionary file.”

“Error: No random event was specified.”

A-4

“Error: stat_start must be: stat_start <= simulation_end”

“Error: Random mode must be TRUE or FALSE.”

“Error: Reuse seed mode must be TRUE or FALSE.”

“Error: ‘tag name’ is an invalid tag.”

“Error: tag ‘tage name’ is already defined.”

“Error: ‘token’ must be preceded by a proper tag.”

“Error: AOC ‘aoc name’ does not exist.”

“Error: Airport ‘airport name’ does not exist.”

“Error: TRACON ‘TRACON name’ does not exist.”

“Warning: Trigger event ‘trigger name’ and associated event ‘associated event
name’ at time ‘simulation time’ cannot be processed because the simulationEnd
time has occurred.”

“Error: There is no default load for primary event ‘primary event name’, associ-
ated event ‘associated event name’, mode ‘mode name’ and type ‘type name’.”

“Error: Previous activity ended after current time.”

“Error: ACTIVATE_AC at time ‘time’ fails; aircraft type ‘type name’ is not in
the aircraft dictionary.”

“Warning: You are trying to deactivate aircraft ‘aircraft name’ at time
‘simulation time’, and there are pending activities. Adjust its deactivation time.”

“Error: DEACTIVATE_AC at time ‘time’ fails; aircraft ‘aircraft name’ does not
exist.”

“Error: Primary event ‘primary event name’ at time ‘time’ fails; aircraft ‘aircraft
name’ does not exist.”

“Error: Primary event at time ‘time’ fails; sector # ‘sector number’ does not ex-
ist.”

“Error: There is no associated event list for primary event ‘primary event name’,
aircraft 1 type ‘type name’, aircraft 2 type ‘type name’, sector 1 type ‘type name’,
sector 2 type ‘type name’ at time ‘time’. “

FAM 2.0 Error & Warning Messages

A-5

“Error: There is no AOC ‘aoc name’ for primary event ‘primary event name’ and
associated event ‘associated event name” at time ‘time’ with delay ‘delay’
[MODE=ORG].”

“Error: There is no tower controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no ground controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no clearance controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no other controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=ORG]”

“Error: There is no TRACON controller for approach with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=ORG].”

“Error: There is no TRACON controller for departure with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event ‘primary event name’ and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=ORG].”

“Error: There is no TRACON controller for final with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event “primary event name” and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=ORG].”

“Error: There is no AOC ‘aoc name’ for primary event ‘primary event name’ and
associated event ‘associated event name” at time ‘time’ with delay ‘delay’
[MODE=DST].”

“Error: There is no tower controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=DST]”

“Error: There is no ground controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=DST]”

A-6

“Error: There is no clearance controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=DST]”

“Error: There is no other controller for airport ‘airport name’ (primary event
‘primary event name’ and associated event ‘associated event name’ at time ‘time’
with delay ‘delay’) [MODE=DST]”

“Error: There is no TRACON controller for approach with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event “primary event name” and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=DST]”

“Error: There is no TRACON controller for departure with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event “primary event name” and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=DST]”

“Error: There is no TRACON controller for final with TRACON ‘TRACON
name’ and airport ‘airport name’ (primary event “primary event name” and asso-
ciated event ‘associated event name’ at time ‘time’ with delay ‘delay’)
[MODE=DST]”

“Error: Expected tag ‘tag name’.”

“Error: Sector ‘sector ID’ does not exist.”

“Error: Channel ‘channel value’ could not be found.”

“Error: Aircraft ‘aircraft name’ does not exist; primary event ‘primary event
name’ and associated event ‘associated event name” fails at time ‘t’ ; you must
specify an aircraft when an associated event involves AC.”

“Error: Aircraft ‘aircraft name’ does not exist; primary event ‘primary event
name’ and associated event ‘associated event name” fails at time ‘t’ ; you must
specify an aircraft when an associated event involves ALT_AC.”

“Error: There is no sector ID ‘sector ID’ for primary event ‘primary event name’
and associated event ‘associated event name’; you must specify the sector ID
when an associated event involves SECT.”

“Error: There is no sector ID ‘sector ID’ for primary event ‘primary event name’
and associated event ‘associated event name’; you must specify the sector ID
when an associated event involves L_SECT.”

FAM 2.0 Error & Warning Messages

A-7

“Error: There is no sector ID ‘sector ID’ for primary event ‘primary event name’
and associated event ‘associated event name’; you must specify the sector ID
when an associated event involves G_SECT.”

“Error: scenario file ‘file name’ does not exist.”

B-1

Appendix B

FAM 2.0 Test Plan

This appendix details the testing that LMI carried out on FAM 2.0. The first sec-
tion details the testing done during the model’s development. The second section
contains a chart showing the validation and verification testing on the finished
model.

DEVELOPMENT TESTS

Random Event Processing

The random.evt file is a master event file that contains a list of the random events
to be used in simulation. If the random mode is TRUE (in the scenario file), ran-
dom events will be generated for a particular aircraft between its activation time
and deactivation time. However, if the simulation end time occurs before the air-
craft is deactivated, random events will be generated up to the simulation end
time. Table B-1 contains the tests for random event processing.

Table B-1. Random Event Processing Tests

Scenario Required result

Sequential a priori events:

T (event1) < T (event2) < … < T (eventn)

No activities will be queued.

Concurrent a priori events:

T (event1) (T (event2) (… (T (eventn)

Activities will be queued.

Simulation end occurs before activities are com-
pleted.

Warning: There are pending ac-
tivities at time T. Simulation con-
tinues until all scheduled events
are completed.

T (eventi) > T (eventj) and i < j Error: Time of a priori event must
be in increasing order of time.

Missing data in columns TIME, ACCHNL Error: Expected a real value.

Missing data in columns ACAL, AC_T, ALT_ACAL,
ARPT, TRC, AOC

Error: Expected a string.

Missing data in columns ACFN, ALT_ACFN, SCT1,
SCT2

Error: Expected integer value.

A priori event involving two aircraft but, ACCHNL is
not specified

Error: Channel is required for ac-
tivities between two different air-
craft.

B-2

Event Dictionary

The event dictionary contains one or more associated event lists for each primary
Event (a priori or random). The associated event list depends on the types of air-
craft 1, aircraft 2, sector 1, and sector 2. Not all events involve two aircraft and
two sectors. FAM matches the corresponding objects from the primary Event
vector (in trig.evt) to their types in the event dictionary.

For example, if a SECT_CHG in trig.evt involves an aircraft and two sectors, then
FAM will match SECT_CHG and column AC1TYP, SECT1TYP and
SECT2TYP in order to find the correct associated event file. DEF is allowed for
these column values. NULL is only allowed for AC2TYP since there is no second
aircraft in the SECT_CHG vector in trig.evt. Table B-2 contains the test for event
dictionary error detection.

Table B-2. Event Dictionary Error Detection Test

Scenario Required result

SECT_CHG involving one aircraft and two
sectors in trig.evt, but SECT_CHG row in event
dictionary (event.dic) contains:

//EVTNAME…AC1TYP…AC2TYP
SCT1TYP…SCT2TYP…ASSOCFILE
PRIORITY

SECT_CHG…747…NULL

NULL…NULL…sect_chg.evt ... 5.0

This vector should be (italics for emphasis)

SECT_CHG…747…NULL

SECTOR_A…SECTOR_A…sect_chg.evt…
5.0

Error message: “Error: There is no as-
sociated event list for primary event”
“SECT_CHG”, aircraft 1 type “747”,
aircraft 2 type “NULL”, sector 1 type
“SECTOR_A”, sector 2 type
“SECTOR_A” at time t.”

Simulation Objects

AIRCRAFT

Each aircraft will be brought into simulation based on its activation and deactiva-
tion time. Once an aircraft is activated, it remains in simulation until it is deacti-
vated. However, the deactivation time of an aircraft must be strictly greater than
its activation time, as well as the times for any events scheduled for that aircraft.
Time of any event involving aircraft j must be greater than or equal to its activa-
tion time and strictly less than its deactivation time. Table B-3 contains the tests
for aircraft event sequencing.

Test Plan

B-3

Table B-3. Aircraft Event Sequencing Tests

Scenario Expected result

Sequential events: No events are overlapping in time

2 aircraft

2 TAKE_OFF Events (different time)

aircraft1: First TAKE_OFF

aircraft2: Second TAKE_OFF

First TAKE_OFF completes before second TAKE_OFF

Aircraft will be deactivated at
specified time after second
TAKE_OFF.

Sequential events: Second event involving second aircraft con-
tinues after its deactivation time

2 aircraft

2 TAKE_OFF Events (different time)

aircraft1: First TAKE_OFF

aircraft2: Second TAKE_OFF

Second TAKE_OFF does not complete before deactivation of
second aircraft

Warning: Aircraft #2 can not be
deactivated at time t. Adjust its
deactivation time.

When the last activity involving
this aircraft is completed, this
aircraft will be deactivated
automatically by FAM 2.0.

Concurrent events: events are overlapping

1 aircraft

1 TAKE_OFF Event and 1 SECT_CHG Event (same time)

Events will queue up for the
aircraft. TAKE_OFF will happen
before SECT_CHG. time.

AIR ROUTE TRAFFIC CONTROL CENTER

An ARTCC is a collection of sectors. For sector change events, sectors serve as
either a losing sector or gaining sector. Sectors are active throughout simulation.
Each sector will serve only one activity at a time. If the same sector is being re-
quested more than once at the same time, FAM 2.0 will queue these activities for
this sector until the completion of the previous activity. If an activity involves a
sector, the sector number must be provided in the a priori event file. If the sector
number is not specified or incorrect, simulation will stop during runtime. This er-
ror cannot be caught before start of simulation. Table B-4 contains the ARTCC
tests.

Table B-4. ARTCC Tests

Scenario Required result

1 aircraft, 1 sector

1 TAKE_OFF Event: aircraft1, sector1

Statistics collected for aircraft and
sector.

1 aircraft 2 sectors

1 SECT_CHG Event: aircraft1, sector1, sector2

Statistics collected for aircraft1, sec-
tor1, and sector2.

B-4

Table B-4. ARTCC Tests (Cont.)

Scenario Required result

1 aircraft, 2 sectors

2 SECT_CHG Events (different time)

aircraft1: sector1 => sector2

aircraft1: sector2 => sector1

Statistics collected for aircraft1, sec-
tor1, and sector2.

1 aircraft, 3 sectors

2 SECT_CHG Events (different time)

aircraft1: sector1 => sector2

aircraft1: sector2 => sector3

Statistics collected for aircraft1, sec-
tor1, sector2, and sector3.

2 aircraft, 2 sectors

2 SECT_CHG Events (same time)

aircraft1: sector1 => sector2

aircraft2: sector2 => sector1

Statistics collected for aircraft1, air-
craft2, sector1, and sector2. Events
queue up for sectors 1 and 2. No
deadlocks for resource acquisition.

2 aircraft, 3 sectors

2 SECT_CHG Events (same time)

aircraft1: sector1 => sector2

aircraft2: sector2 => sector3

Statistics collected for aircraft1, air-
craft2, sector1, sector2, and sector3;
events queue up for sector 2.

AIRLINE OPERATIONS CENTER

There is no limit to how many AOCs a user can define. If an AOC is defined, it
will remain active throughout simulation. If an activity involves an AOC, the
AOC name must be provided in the a priori event file. If the AOC name is not
specified or incorrect, simulation will stop. Table B-5 contains the test plan for
AOC events.

Table B-5. AOC Event Test Plan

Scenario Required result

1 aircraft 1 AOC

1 TAKE_OFF Event

aircraft1: AOC1

Statistics collected for aircraft1 and AOC1.

1 aircraft 1 AOC

2 TAKE_OFF Events (different time)

aircraft1: AOC1

aircraft1: AOC1

Statistics collected for aircraft1 and AOC1.

1 aircraft 2 AOC

2 TAKE_OFF Events (different time)

aircraft1: AOC1

aircraft1: AOC2

Statistics collected for aircraft1, AOC1, and
AOC2.

Test Plan

B-5

Table B-5. AOC Event Test Plan (Cont.)

Scenario Required result

2 aircraft 2 AOC

2 TAKE_OFF Events (different time)

aircraft1: AOC1

aircraft2: AOC2

Statistics collected for aircraft1, aircraft2, AOC1,
and AOC2.

2 aircraft 1 AOC

2 TAKE_OFF Events (same time)

aircraft1: AOC1

aircraft2: AOC1

Statistics collected for aircraft1, aircraft2, and
AOC1; events queue up for AOC 1.

2 aircraft 2 AOC

2 TAKE_OFF Events (same time)

aircraft1: AOC1

aircraft2: AOC2

Statistics collected for aircraft1, aircraft2, AOC1,
and AOC2.

1 aircraft 1 sector 1 AOC

1 TAKE_OFF Event

aircraft1, sector1, AOC1

Statistics collected for aircraft1, sector1, and
AOC1.

AIRPORT CONTROLLER

There are four different types of controllers for each airport:

◆ Tower

◆ Ground

◆ Clearance

◆ Other.

An airport controller (e.g., tower) is a collection of personnel, radios, and equip-
ment. The airport controller must be defined before it can be used. Once the con-
troller is defined, it will remain in the simulation throughout the run. If an activity
involves a controller (e.g., tower, ground, clearance, other), the airport name must
be provided in the a priori event file. If the airport name is not specified or incor-
rect, simulation will stop.

Table B-6 contains the test plan for airport controllers. The scenarios in Table B-6
use only tower as the airport controller. The same scenarios have been applied for
any of the other three controller types.

B-6

Table B-6. Airport Controller Tests

Scenario Required result

1 aircraft 1 tower

1 TAKE_OFF Event

aircraft1: tower1

Statistics collected for aicraft1 and tower1.

2 aircraft 1 tower

2 TAKE_OFF Events (different time)

aircraft1: tower1

aircraft2: tower1

Statistics collected for aircraft1, aircraft2, and
tower1.

2 aircraft 1 tower

2 TAKE_OFF Events (same time)

aircraft1: tower1

aircraft2: tower1

Statistics collected for aircraft1, aircraft2, and
tower1; events queue up for tower 1.

1 aircraft 1 tower 1 sector

1 TAKE_OFF Event

aircraft1, tower1, sector1

Statistics collected for aircraft1, tower1, and sec-
tor1.

1 aircraft 1 tower 1 sector 1 AOC

1 TAKE_OFF Event

aircraft1, tower1, sector1, AOC1

Statistics collected for aircraft1, tower1, sector1,
and AOC1.

TRACON CONTROLLER

Each TRACON controller may serve more than one position and more than one
airport. There are three positions: approach, departure and final. Each TRACON
controller must be defined and assigned an airport name and position before it can
be used. A TRACON controller may serve

◆ all three positions for the same airport,

◆ different airports and different positions, or

◆ different airports and the same positions.

If an activity involves a TRACON controller, the position (e.g., approach, depar-
ture, final), the airport name and TRACON name must be specified in the a priori
event file. If the TRACON controller of the given TRACON name does not serve
the given airport name and position, simulation will stop.

Table B-7 contains the first phase of the test plan for TRACON controller objects.
The scenarios in Table B-7 assume that the TRACON controller, Cont_One, is
defined, and the airport and TRACON name are provided in the a priori event file.

Test Plan

B-7

Table B-7. TRACON Controller Tests, First Phase

Scenario Required Result

Assume that the controller serving Denver, Approach will
be used. Now, Cont_One is defined as the following:

CONT_NAME AIRPORT POSITION

Cont_One Denver Approach

Cont_One Denver Departure

Cont_One Denver Final

Statistics collected for TRACON con-
troller Cont_One.

Assume that the controller serving Denver, Approach will
be used; but Cont_One is defined as the following:

CONT_NAME AIRPORT POSITION

Cont_One Denver Departure

Cont_One Denver Final

Error: There is no TRACON controller
for position Approach.

Table B-8 contains the second phase of the TRACON controller test plan. The
scenarios in Table B-8 assume that the TRACON controller is defined; airport and
TRACON name are provided in the a priori event file. The TRACON controller
named Cont_One will serve all three positions for the given airport.

Table B-8. TRACON Controller Tests, Second Phase

Scenario Required result

1 aircraft 1 TRACON controller

1 TAKE_OFF Event

aircraft1, Cont_One

Statistics collected for aircraft1
and Cont_One.

2 aircraft 1 TRACON controller

2 TAKE_OFF Events (different time)

aircraft1: Cont_One

aircraft2: Cont_One

Statistics collected for aircraft1,
aircraft2, and Cont_One; events
are queued up for Cont_One.

2 aircraft 1 TRACON controller

2 TAKE_OFF Events (same time)

aircraft1: Cont_One

aircraft2: Cont_One

Statistics collected for aircraft1,
aircraft2, and Cont_One; events
queue up for Cont_One.

1 aircraft 1 TRACON controller 1 sector

1 TAKE_OFF Event

aircraft1, Cont_One, sector1

Statistics collected for aircraft1,
Cont_One, and sector1.

1 aircraft 1 TRACON controller 1 sector 1 AOC

1 TAKE_OFF Event

aircraft1, Cont_One, sector1, AOC1

Statistics collected for aircraft1,
Cont_One, sector1, and AOC1.

1 aircraft 1 TRACON controller 1 sector 1 AOC 1 tower

1 TAKE_OFF Event

aircraft1, Cont_One, sector1, AOC1, tower1

Statistics collected for aircraft1,
Cont_One, sector1, AOC1, and
tower1.

B-8

COMMUNICATIONS CHANNEL

All communications channels are defined in dictionary files. If any a priori event
involves two different aircraft, then the channel must be defined in the a priori
event file. The value of channel must be a real number greater than zero. Ta-
ble B-9 shows the tests for communications channels.

Table B-9. Communications Channels Tests

Scenario Required result

A channel is requested by an event

Event1: channel 1

Statistics collected for channel 1.

A channel is requested by multiple events

Event1: channel 1
.
.
.
Eventn: channel 1

Statistics collected for channel 1;
events are queued up for channel 1.

An event involves communicating via radio 2 in a sector
(the sector has 2 radios); but that sector has only 1
channel assigned through the dictionary file.

Error: channel not found.

File Processing

TYPE FILES

Each type file contains the type of the simulation object and the load file name
associates with it. The scenarios below involved the aircraft type. But, same test
scenarios have been applied to other simulation object types, such as, sector,
AOC, airport controllers, and TRACON controllers. Table B-10 lists the tests for
the type files.

Table B-10. Type File Tests

Scenario Expected result

File is in correct format No error.

The load file name is not specified Error: Load file is expected.

The load file name is specified and cannot be located or opened Error: File can not be opened.

DICTIONARY FILES

Sector Dictionary File

Sector dictionary file contains sector IDs, sector types, and 10 channels associate
with each sector. The maximum number of channel is 10. Table B-11 contains the
sector dictionary file tests.

Test Plan

B-9

Table B-11. Sector Dictionary File Tests

Scenario Required result

Sector type is not defined Error: Sector type does not exist.

No channel is specified Error: At least one channel must be specified.

Sector ID is not an integer Error: Sector ID must be integer.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

AOC Dictionary File

The AOC dictionary file contains AOC name, AOC types, and 10 communica-
tions devices associated with each AOC. Table B-12 contains the AOC dictionary
file tests.

Table B-12. AOC Dictionary File Tests

Scenario Required result

AOC type is not defined Error: AOC type does not exist.

No channel is specified Error: At least one channel must be specified.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

Airport Dictionary File

The airport dictionary file contains airport name, controller name, controller type,
and 10 communications devices associated with each controller. Table B-13 con-
tains the airport dictionary file tests.

Table B-13. Airport Dictionary File Tests

Scenario Required result

Airport controller type is not defined Error: Airport controller type does not exist.

No channel is specified Error: At least one channel must be specified.

Missing channel columns Error: Channel value is expected at column #.

Extra channel columns Error: Extra channel value.

TRACON Dictionary file

The TRACON dictionary file contains the TRACON name, controller name, con-
troller type, and 10 communications devices associated with each TRACON con-
troller. Table B-14 contains the TRACON dictionary file test plan.

B-10

Table B-14. TRACON Dictionary File Tests

Scenario Required result

TRACON controller type is not defined Error: TRACON controller type does
not exist.

TRACON controller name in the [AIRPORT_POSITION]
is not defined

Error: TRACON controller name does
not exist.

No channel is specified Error: At least one channel must be
specified.

Missing channel columns Error: Channel value is expected at
column #.

Extra channel columns Error: Extra channel value.

Position is not approach, departure, or final Error: Position name must be ap-
proach, departure, or final.

LOAD FILE

Each load file contains the number of personnel (controllers/dispatchers/pilots),
communications devices, and equipment. It also contains task and communica-
tions channel loads and equipment system utilization associated with each activ-
ity. Table B-15 contains the tests for the load files.

Table B-15. Load File Tests

Scenario Required result

Missing NUM_PILOTS (for aircraft load file) or
NUM_PILOTS < 1 or NUM_PILOTS > 3

Error: NUM_PILOTS is expected and must
be between 1 and 3.

Missing NUM_DISPATCHER(for AOC load file) Error: NUM_DISPATCHER is expected.

Missing NUM_CONTROLLER (for sector, airport con-
troller, TRACON controller load files)

Error: NUM_CONTROLLER is expected.

NUM_CONTROLLER and NUM_DISPATCHER must
be between 1 and 10 (In case of airport, there must be
one tower controller)

Error: NUM_CONTROLLER must be be-
tween 1 and 10.

Missing NUM_COMMDEVICES or
NUM_COMMDEVICES > 10 or
NUM_COMMDEVICES < 1

Error: NUM_COMMDEVICES must be
between 1 and 10.

Missing NUM_EQUIPMENT or NUM_EQUIPMENT >
10 or NUM_EQUIPMENT < 0

Error: NUM_EQUIPMENT is expected and
must be between 0 and 10.

Missing = Error: = is expected.

Non-integer value for the number of controllers, or
communication devices, or equipment

Error: Integer value is expected.

Missing tag [LOAD] Error: Tag [LOAD] is expected.

Missing tag [LOAD_END] Error: Tag [LOAD_END] is expected.

Extra load column Error: Extra load column is found at line #
column #.

Missing load column Error: Load value is expected at line # col-
umn #.

Test Plan

B-11

SCENARIO FILE

The scenario file relates the actual input file names to the pseudonyms used by
FAM 2.0. Table B-16 contains the test plan for the scenario file. In Table B-16 the
order of each tag is not relevant. However, under each tag, parameters must be
specified exactly as shown in the user document.

Table B-16. Scenario File Tests

Scenario Required result

Missing $DATA Error: $DATA is expected.

Missing = Error: = is expected.

Missing $WORKING Error: $WORKING is expected.

Missing stat_start Error: stat_start is expected.

Missing simulation_end Error: simulation_end is expected.

Simulation_start < simulation_end No error.

stat_start >= simulation_end Error: Value of stat_start must be <
simulation_end time.

Missing a priori_file Error: a priori_file is expected.

Missing random_mode Error: random_mode is expected.

Random_mode <> “TRUE” and random_mode <>
“FALSE”

Error: random_mode must be TRUE or
FALSE.

Missing reuse_seed Error: reuse_seed is expected.

Reuse_seed <> “TRUE” and reuse_seed <> “FALSE Error: reuse_seed must be TRUE or
FALSE.

Missing random_file Error: random_file is expected.

Missing min_inter_random_time Error: min_inter_random_time is ex-
pected.

Missing max_inter_random_time Error: max_inter_random_time is ex-
pected.

Min_inter_random_time (max_inter_random_time No error.

Min_inter_random_time > max_inter_random_time Error: min_inter_random_time must be
(max_inter_random_time).

Missing event_dictionary Error: event_dictionary is expected.

Missing aircraft_type Error: aircraft_type is expected.

Missing sector_type Error: sector_type is expected.

Missing sector_dictionary Error: sector_dictionary is expected.

Missing aoc_type Error: aoc_type is expected.

Missing aoc_dictionary Error: aoc_dictionary is expected.

Missing airport_controller_type Error: airport_controller_type is ex-
pected.

Missing airport_controller_dictionary Error: airport_controller_dictionary is
expected.

Missing tracon_controller_type Error: tracon_controller_type is expected.

Missing tracon_controller_dictionary Error: tracon_controller_dictionary is
expected.

B-12

Other Runtime Errors

FAM 2.0 catches a few other runtime errors caught during file preprocessing be-
fore simulation begins that have not been described yet. Table B-17 contains the
tests for these errors.

Table B-17. Other Runtime Error Tests

Scenario Expected result

The ORG or DST keyword in the associated event file
(e.g., L_SECT, AOC, departure) does not have corre-
sponding identifier in the event vector of the a priori-
event file. (Refer to the user documentation in the sec-
tion for associated event)

In the case of a sector: Error: There is
no sector ID for primary event “primary
event name” and associated event
“associated event name”. You must
specify the Sector ID when an associ-
ated event involves SECT.

Missing LOADS when an associated event is being exe-
cuted, but corresponding loads are not found in the in-
volved simulation objects

Error: There is no load for primary
event (e.g., “SECT_CHG”) and asso-
ciated event (e.g., “CALL_AC”), mode
= mode (e.g., “ORG”) and type = type
(e.g.,” SECTOR_A”).

Missing default LOADS when an associated event is
being executed; and corresponding loads are found, but
the mode and mate-type cannot be matched exactly and
there are defaults specified.

Error: There is no default load for pri-
mary event (e.g., “SECT_CHG”) and
associated event (e.g., “CALL_AC”),
mode = mode (e.g., “ORG”) and type =
type (e.g.,” SECTOR_A”)

The time for the various events in the file is not in as-
cending order; events are permitted to begin at the same
time

Error: DLY time must be in ascending
order.

VALIDATION AND VERIFICATION TESTING

Figure B-1 details the tests that LMI ran on the finished FAM 2.0 model. Each
scenario was created with increasing complexity and scale. No errors were en-
countered during this testing.

Figure B-1. Validation and Verification Test Scenarios

FAM Test Scenario Objectives
Scenario # Aircraft ARTCC Tower TRACON AOC Notes

1 2 2 - - - Sector Change
2 1 1 1 1 1 Departure from Airport
3 1 1 1 1 - Arrival at Airport

4 4 1 2 2 1

Combination of scenarios 1-4:
1. take-off :: exit
2. take-off :: land
3. enter :: land
4. enter :: exit

5 4 7 2 2 1
Extension of scenario 4, including
Sector Change events

6 50 2 2 1
Extension of scenario 5, with mulitple
aircraft

C-1

Appendix C

FAM 2.0 ModSim III Code Listings

The code listings for the FAM 2.0 program modules run to over 100 pages. Be-
cause of their limited use and volume, they are published separately. The paper
document and the electronic files are available from LMI. An individual or or-
ganization that does not have access to an HP-UNIX platform but does have a
ModSim III site license can read the electronic files, which are simple text files,
and create their own model running on their platform.

